From Digitalism to Observer Jake School of Systems Science

Outline

- Digitalism
- Wolfram's NKS
- Tierra liked simulations
- Observer
- Clickstream

Triumph of Computation Theory

David Hilbert (1862-1943)

Alonzo Church(1903-1995)

Stephen Kleene (1909-1994)

Alan Turing, 1912-1954

Von Neumann, 1903-1957

Self-reproducing Automata

a

THEORY OF SELF-REPRODUCING AUTOMATA BY JOHN VON NEUMANN

COMPLETED PORTION OF UNCOMPLETED PART OF CONSTRUCTED AUTOMATON (x_{0}, Y_{0}) (0,0) 51333 UNIT CONSTRUCTING ARM CONSTRUCTING CONSTRUCTION CONTROL (NOT DRAWN TO SCALE) $X_0, Y_0, \alpha, \beta, \lambda_{00} \cdots \lambda_{\alpha-1, \beta-1}$ TAPE UNIT TAPE CONTROL (NOT DRAWN TO SCALE) TAPE

EDITED AND COMPLETED BY ARTHUR W. BURKS

Self-reference

这句话是错的

这句话是对的

自颠覆的哥德尔语句, 自创生的冯纽曼自动机

Studies of Simple Programs

Studies of Simple Programs

Studies of Simple Programs

Artificial life & Open Ended Evolution

- •Many Tierra-like systems
- •All of them are not open-ended
- •There seems a law like 2nd thermodynamic law

Wolfram's NKS

- Published his first paper in 15 years old, the youngest recipient of MacArthur Prize Fellowship (22 years old)
- Worked for Princeton, Illinois university
- Launched Wolfram Research Inc. in 1986

- Shifted from physics to complexity, began to study CA in mid 1980's
- Started to write NKS book from 1991
- Published the book in May, 2002

Wolfram's NKS

(局域的不规则结构)

Universal Machine

A universal machine can emulate any other machines by right initial configure

Universal Cellular Automaton

The rules for the universal cellular automaton. There are 19 possible colors for each cell, represented here by 19 different icons. Since the new color of each cell depends on the previous colors of a total of five cells, there are in principle 2,476,099 cases to cover. But by using \blacksquare to stand for a cell with any possible color, many cases are combined. Note that the cases shown are in a definite order reading down successive columns, with special cases given before more general ones. With the initial conditions used, there are some combinations of cells that can never occur, and these are not covered in the rules shown.

Details of how the universal cellular automaton emulates rule 254. Each of the blocks in the universal cellular automaton represents a single cell in rule 254, and encodes both the current color of the cell and the form of the rule used to update it.

CA 110

CA 110 is universal, it is really a non-trivial discovery!!! Skill: Emulation by emergent behavior not by the rules

The proof of CA110 is universal

CTTOR110 [rules /; Select [rules, Mod[Length[#], 6] \neq 0 & == {}, init]:= Module [$\{q1, q2, q3, nr = 0, x1, y1, sp\}$, g1 = Flatten[Map[If[# === {}, {{{2}}, {{{2}}}, {{{1, 3, 5 - First[#]}}, Table[{4, 5 - #[[n]]}, {n, 2, Length[#]}]}] &, rules] /. a Integer +> Map[{d[#[[1]], #[[2]]], s[#[[3]]]}&, Partition[c[a], 3]], 4]; $q_2 = q_1 = MapThread[If[#1 === #2 === {d[22, 11], s_3}, {d[20, 8], s_3}, #1] \&, {q_1, RotateRight[q_1, 6]}];$ While [Mod[Apply[Plus, Map[#[1, 2]] &, g2]], 30] ≠ 0, nr ++; g2 = Join[g2, g1]]; y1 = g2[[1, 1, 2]] - 11; If[y1 < 0, y1 += 30]; Cases[Last[g2][[2]], s[d[x , y1], , , a] ↔ (x1 = x + Length[a])]; g3 = Fold[sadd, {d[x1, y1], {}}, g2]; sp = Ceiling[5Length[g3][2]]/(28 nr) + 2]; {Join[Fold[sadd, {d[17, 1], {}}, Flatten[Table[{{d[sp 28+6, 1], s[5]}, {d[398, 1], s[5]}, {d[342, 1], s[5]}, {d[370, 1], s[5]}, {3}], 1]][2], bg[4, 11]], Flatten[Join[Table[bgi, {sp 2 + 1 + 24 Length[init]}], init /. {0 → init0, 1 → init1}, bg[1, 9], bg[6, 60 - g2[1, 1, 1] + g3[1, 1] + If[g2[1, 1, 2], 4g3[1, 2], 8, 0]]]], g3[2]} s[1] = struct[{3, 0, 1, 10, 4, 8}, 2]; s[2] = struct[{3, 0, 1, 1, 619, 15}, 2]; s[3] = struct[{3, 0, 1, 10, 4956, 18}, 2]; $s[4] = struct[{0, 0, 9, 10, 4, 8}];$ s[5] = struct[{5, 0, 9, 14, 1, 1}]; {c[1], c[2]} = Map [Join [{22, 11, 3, 39, 3, 1}, #] & {{63, 12, 2, 48, 5, 4, 29, 26, 4, 43, 26, 4, 23, 3, 4, 47, 4, 4}, {87, 6, 2, 32, 2, 4, 13, 23, 4, 27, 16, 4}]; {c[3], c[4], c[5]} = Map[Join[#, {4, 17, 22, 4, 39, 27, 4, 47, 4, 4}] & {17, 22, 4, 23, 24, 4, 31, 29}, {17, 22, 4, 47, 18, 4, 15, 19}, {41, 16, 4, 47, 18, 4, 15, 19}] {init0, init1} = Map[IntegerDigits[216 (#+43210⁴⁹), 2] &, {246 005 560 154 658 471 735 510 051 750 569 922 628 065 067 661, 1043 746 165 489 466 852 897 089 830 441 756 550 889 834 709 645} bqi = IntegerDigits[9976, 2] bg[s_, n_] := Array[bgi[[1 + Mod[# - 1, 14]]] &, n, s] ev[s[d[x, y], pl, pr, b]] := Module[{r, pl1, pr1}, r = Sign[BitAnd[2^ListConvolve[{1, 2, 4}, Join[bg[p1-2, 2], b, bg[pr, 2]]], 110]]; $pl1 = (Position[r - bg[pl + 3, Length[r]], 1 | -1] /. \{\} \rightarrow \{\{Length[r]\}\})[[1, 1]; pr1 = Max[pl1, (Position[r - bg[pr + 5 - Length[r], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\})[[-1, 1]]; [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{\} \rightarrow \{\{1\}\}, [Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[pr + 5 - Length[r]], 1 | -1] /. \{Position[r - bg[p$ s[d[x+pl1-2, y+1], pl1+Mod[pl+2, 14], 1+Mod[pr+4, 14]+pr1-Length[r], Take[r, {pl1, pr1}]]] struct[{x , y , pl , pr , b , bl }, p Integer: 1] := Module[{gr = s[d[x, y], pl, pr, IntegerDigits[b, 2, b1]], p2 = p + 1}, Drop[NestWhile[Append[#, ev[Last[#]]] &, {gr}, If[Rest[Last[#]] === Rest[gr], p2 -]; p2 > 0 &], -1]] sadd[{d[x , y], b}, {d[dx , dy], st}] := Module[{x1 = dx - x, y1 = dy - y, b2, x2, y2}, While[y1 > 0, {x1, y1} += If[Length[st] == 30, {8, -30}, {-2, -3}]]; $b2 = First[Cases[st, s[d[x3, -y1], p1, , sb]] \Rightarrow Join[bg[p1 - x1 - x3, x1 + x3], x2 = x3 + Length[sb]; y2 = -y1; sb]]; \{d[x2, y2], Join[b, b2]\}]$

Finding Minimum universal machine

- 1962: TM (7 states, 4 colors)
- 2002: CA110
- 2002: Turing machine (2 states, 5 colors)
- Wolfram prize:

THE WOLFRAM 2,3 TURING MACHINE RESEARCH PRIZE

\$25,000 prize						
Is this Turing machine universal, or not?						
ه	<u>،</u>	<u>ه</u> ۲	•	•	4	

Computational equivalence principle

- Any class 4 system is universal
- There is no random class
- Universality instead of complexity

Causal network

- Every thing is causal
- Event is node, causal effect is edge

FUNDAMENTAL PHYSICS | CHAPTER 9

Different ways to view causal network

Problems

- Digitalism or reductionism?
- All computational models are closed
- 2nd Thermodynamic law?
- Open observer computer games

FPS

RTS

Nabips//www.WagLand.net

New field emerging

World of Warcraft

Second life

W.S. Bainbridge: The Scientific Research Potential of VIRTUAL WORLDs, Science, vol 317, 2007 Jim Giles, Social Sciences: Life's A Game, Nature 445, 18-20, 2007/01/04

Turing Machine – Observer Model

Observer – The Engine of Machine

Play in Time

Example: GDP of Everquest

- Edward Castronova: Economist at Indiana University in Bloomington
- 2001:
- A First-Hand Account of Market and Society on the Cyberian Fontier

"I would venture to claim that this is the first time in human history that a distinct macrosocial phenomenon has actually been verified experimentally."

A "Real" Metaphor

Italian

1

French

Japanese

Turkish

Network Construction

Digital Ecosystem

Common laws

OTIONTITY DAM

